Explain resolution of vector in two dimension. Explain resolution of vector in its perpendicular components.
$O$-$XY$ two dimensional Cartesian coordinate system is represented in figure.
Position vector of point $\mathrm{P}$ is $\overrightarrow{\mathrm{A}}$.
By drawing projection from $P$ to $X$-axis, $OM$ is obtained $\overrightarrow{O M}=\vec{A}_{x}=\mathrm{A}_{x} \hat{i}=\mathrm{X}$-component of $\overrightarrow{\mathrm{A}}$
By drawing projection from $P$ to $Y$-axis, $ON$ is obtained $\overrightarrow{O N}=\overrightarrow{A_{y}}=A_{x} \hat{j}=Y$-component of $\vec{A}$. where, $\mathrm{A}_{x}$ and $\mathrm{A}_{y}$ are real numbers.
From figure,
$\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{A}_{x}}+\overrightarrow{\mathrm{A}_{y}}$
$\overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$
Suppose, $\vec{A}$ makes angle ' $\theta$ ' with $X$-axis.
For $\Delta \mathrm{OMP}$,
$\cos \theta=\frac{\mathrm{A}_{x}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{x}=\mathrm{A} \cos \theta$
$\sin \theta=\frac{\mathrm{A}_{y}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{y}=\mathrm{A} \sin \theta$
From equation $(3)$ and $(4)$, it can be said that components can be positive, negative or zero depending upon $\theta$.
Vectors can be represented in a plane by two ways:
$(i)$ By its magnitude and direction.
$(ii)$ By its components ( $x$ and $y$ components)
$O$-$XY$ two dimensional Cartesian coordinate system is represented in figure.
Position vector of point $\mathrm{P}$ is $\overrightarrow{\mathrm{A}}$.
By drawing projection from $P$ to $X$-axis, $OM $ is obtained $\overrightarrow{O M}=\vec{A}_{x}=\mathrm{A}_{x} \hat{i}=\mathrm{X}$-component of $\overrightarrow{\mathrm{A}}$
By drawing projection from $P$ to $Y$-axis, $ON$ is obtained $\overrightarrow{O N}=\vec{A}_{y}=\mathrm{A}_{x} \hat{j}=\mathrm{Y}$-component of $\vec{A}$
where, $\mathrm{A}_{x}$ and $\mathrm{A}_{y}$ are real numbers.
From figure,
$\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{A}_{x}}+\overrightarrow{\mathrm{A}_{y}} $
$\overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$
Suppose, $\overrightarrow{\mathrm{A}}$ makes angle ' $\theta$ ' with $X$-axis.
For $\Delta \mathrm{OMP}$,
$\cos \theta=\frac{\mathrm{A}_{x}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{x}=\mathrm{A} \cos \theta$
$\sin \theta=\frac{\mathrm{A}_{y}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{y}=\mathrm{A} \sin \theta$
From equation $( 3 )$ and $(4)$, it can be said that components can be positive, negative or zero depending upon $\theta$.
Vectors can be represented in a plane by two ways :
$(i)$ By its magnitude and direction.
$(ii)$ By its components ( $x$ and $y$ components)
.
If two forces of $5 \,N$ each are acting along $X$ and $Y$ axes, then the magnitude and direction of resultant is
The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are
Explain resolution of vectors.
Colum $I$ | Colum $II$ |
$(A)$ $x-$axis | $(p)$ $5\,unit$ |
$(B)$ Along another vector $(2 \hat{ i }+\hat{ j }+2 \hat{ k })$ | $(q)$ $4\,unit$ |
$(C)$ Along $(6 \hat{ i }+8 \hat{ j }-10 \hat{ k })$ | $(r)$ $0$ |
$(D)$ Along another vector $(-3 \hat{ i }-4 \hat{ j }+5 \hat{ k })$ | $(s)$ None |