Explain resolution of vector in two dimension. Explain resolution of vector in its perpendicular components.
$O$-$XY$ two dimensional Cartesian coordinate system is represented in figure.
Position vector of point $\mathrm{P}$ is $\overrightarrow{\mathrm{A}}$.
By drawing projection from $P$ to $X$-axis, $OM$ is obtained $\overrightarrow{O M}=\vec{A}_{x}=\mathrm{A}_{x} \hat{i}=\mathrm{X}$-component of $\overrightarrow{\mathrm{A}}$
By drawing projection from $P$ to $Y$-axis, $ON$ is obtained $\overrightarrow{O N}=\overrightarrow{A_{y}}=A_{x} \hat{j}=Y$-component of $\vec{A}$. where, $\mathrm{A}_{x}$ and $\mathrm{A}_{y}$ are real numbers.
From figure,
$\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{A}_{x}}+\overrightarrow{\mathrm{A}_{y}}$
$\overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$
Suppose, $\vec{A}$ makes angle ' $\theta$ ' with $X$-axis.
For $\Delta \mathrm{OMP}$,
$\cos \theta=\frac{\mathrm{A}_{x}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{x}=\mathrm{A} \cos \theta$
$\sin \theta=\frac{\mathrm{A}_{y}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{y}=\mathrm{A} \sin \theta$
From equation $(3)$ and $(4)$, it can be said that components can be positive, negative or zero depending upon $\theta$.
Vectors can be represented in a plane by two ways:
$(i)$ By its magnitude and direction.
$(ii)$ By its components ( $x$ and $y$ components)
$O$-$XY$ two dimensional Cartesian coordinate system is represented in figure.
Position vector of point $\mathrm{P}$ is $\overrightarrow{\mathrm{A}}$.
By drawing projection from $P$ to $X$-axis, $OM $ is obtained $\overrightarrow{O M}=\vec{A}_{x}=\mathrm{A}_{x} \hat{i}=\mathrm{X}$-component of $\overrightarrow{\mathrm{A}}$
By drawing projection from $P$ to $Y$-axis, $ON$ is obtained $\overrightarrow{O N}=\vec{A}_{y}=\mathrm{A}_{x} \hat{j}=\mathrm{Y}$-component of $\vec{A}$
where, $\mathrm{A}_{x}$ and $\mathrm{A}_{y}$ are real numbers.
From figure,
$\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{A}_{x}}+\overrightarrow{\mathrm{A}_{y}} $
$\overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$
Suppose, $\overrightarrow{\mathrm{A}}$ makes angle ' $\theta$ ' with $X$-axis.
For $\Delta \mathrm{OMP}$,
$\cos \theta=\frac{\mathrm{A}_{x}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{x}=\mathrm{A} \cos \theta$
$\sin \theta=\frac{\mathrm{A}_{y}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{y}=\mathrm{A} \sin \theta$
From equation $( 3 )$ and $(4)$, it can be said that components can be positive, negative or zero depending upon $\theta$.
Vectors can be represented in a plane by two ways :
$(i)$ By its magnitude and direction.
$(ii)$ By its components ( $x$ and $y$ components)
.
Find the magnitude of the unknown forces $X$ and $Y$ if sum of all forces is zero
What is the maximum number of rectangular components into which a vector can be split in space?
Explain the resolution of vector in three dimension.
Vector$\overrightarrow A $ makes equal angles with $x, y$ and $z$ axis. Value of its components (in terms of magnitude of $\overrightarrow A $) will be
A particle starting from the origin $(0,0)$ moves in a straight line in the $(x, y)$ plane. Its coordinates at a later time are $(\sqrt 3,3)$ . The path of the particle makes with the $x -$ axis an angle of ....... $^o$